ORGANIC FARMING FOR SUSTAINABLE CROP PRODUCTION

Dr. B. Kalita Department of Agriculture, Assam

Three major events led to chemical input intensive revolution in Agriculture

- 1. Successful synthesis of NH₃ by Fritz Herber (1907)
- 2. Discovery of remarkable insecticidal power of DDT by Dr. Paul Muller (1939)
- 3. Introduction of dwarfism from
 - i. Norin-10 into Mexican wheat by Norman Borlaug (1954) and
 - ii. Dee-geo-woo-gen into tall Indonesian rice variety at IRRI (1966)

GREEN REVOLUTION

Chemical fertilizers

Chemical Pesticides

THYV

Irrigation

Mechanization

SYNTHETIC FERTILIZER (Example of adverse affects)

1. Urea: $Co(NH_2)_2 \longrightarrow NO_3^-$, NH_4^+

Free radials from urea application ----- NO₃ → harmful

Haematoglobimea (Blue disease syndrome)

>10 ppm O₂ carrying capacity decreases

Free NO₃ accumulation in animal cells

NH₂NO (Nitrosamine) (Carcinogenic affect)

Use of chemical fertilizer leads to imperfectly synthesized protein in leaves

Many diseases in plants, animals and human beings

Harmful effect of Chemical Fertilizer

Glasgow university scientists (1993)

Û

Found link between levels of nitrate in vegetables and gullet cancer due to increase use of nitrate fertilizer since world war II.

2. LEAD AND CADMIUM CONTENT INFERTILIZER (ppm):

Fertilizer	Lead	Cadmium
Urea	4	1
SSP	609	187
DAP	188	109
RP	1135	303
MOP	88	14

SYNTHETIC PESTICIDE (Example of adverse affects)

(i) DDT – During 2nd World War Paul Mullar (British) – Insceticidal property.

Norman Moore (British Scientist) was first to suggest that decline of Eagles was due to the then popular insecticide – DDT

Rachel Carson did much to popularize Moore's theory that there was price to pay for using chemicals to grow food.

DDT (Bio-magnification) progressive concentration

0.02 ppm in water———5 ppm in plankton ——— 40 – 300 ppm in plankton eating fish ——— up to 2500ppm in carnivorous species

Silent Spring (Book)— by Rachel Carson
In California — Lake — DDT was used to repel / kill mosquito —
aquatic plants absorbed DDT — Duck ate aquatic plants —
Population drastically reduced due to Biomagnification.

Overall adverse affects of pesticides-

- 1. Weakness of nervous system
- 2. Stomach disorder
- 3. Fatal disease like cancer
- 4. Chain wise adverse affect on animal Kingdom
- 5. Affect on activity of soil micro & macro organisms.
- 6. Sterility
- 7. Asthma
- 8. Skin disorder

Now, what is the answer?

Organic Farming

ORGANIC FARMING:

Organic farming is a unique production management system which promotes & enhances agro-ecosystem health, including biodiversity, biological cycles & soil biological activity and this is accomplished by using on-farm agronomic, biological and mechanical methods in exclusion of all synthetic off-farm inputs.

OBJECTIVES OF ORGANIC FARMING:

- 1. To produce food of high nutritional quality in sufficient quantity.
- 2. To work with natural system with more scientific design in order to leave a living soil for our next generations.

SCOPE OF ORGANIC FARMING IN N.E. STATES

CONSUMPTION OF PLANT NUTRIENTS AND PESTICIDES IN N.E. STATES

State	Plan ı	nutrients 2001-02		Consumption of pesticides (Tones)	
	N	Р	K		
Arunachal Pradesh	1.56	0.90	2.88	42	
Assam	19.18	10.56	38.81	630	
Manipur	86.54	12.00	104.94	42	
Meghalaya	10.52	6.16	17.16	19	
Mizoram	4.94	5.16	13.72	13	
Nagaland	1.12	0.85	2.13	NA	
Sikkim	5.05	3.49	9.72	-	
Tripura	16.55	8.63	30.46	100	
Average	18.83	9.07	35.04	141	
Average India	58.72	22.75	90.12	80,659	

Fertilizer use (India) — Up to 1906 no. chemical fertilizer was used in India

1950-51 ----- 0.5 Kg/ha 2007-08 ---- 104.5 Kg/ha 2007-08 (Assam) ---- 58.6 Kg/ha

PESTICIDES CONSUMPTIONS:

India ---- 0.448 Kg/Ha

Japan ----- 10-12 Kg/ha

USA ----- 8-10 Kg/ha

Assam ----- 40.46 gm/ha

Chemical analysis of Soil samples collected from the farmers fields under organic and conventional farming systems

	Or sou	ganic ırces*	Integrated nutrient use**		Chemical fertilizer ***	
Characteristics	Dep	th (cm)	Depth (cm)		Depth (cm)	
	0-7.5	7.5-15.0	0-7.5	7.5-15.0	0-7.5	7.5-15.0
P ^H (1:2.5)	7.25	7.25	7.41	7.43	7.51	7.51
Organic carbon (%)	0.60	0.58	0.53	0.52	0.41	0.39
Available N (kg ha-1)	256	255	224	222	185	184
Available P ₂ O ₅ (kg ha-¹)	49	49	42	41	29	28
Available K ₂ O (kg ha-1)	458	459	477	470	426	427
Mineral (ug g-1)	70.37	66.00	57.33	54.66	46.28	44.43

^{*} Average of 8 soil samples; ** Average of 6 soil samples; *** Average of 7 soil samples Source: Anonymous (2002)

Microbiological analysis of Soil samples collected from the farmers fields under organic and conventional farming systems

Observa stanistica	Organic sources*		Integrated nutrient use**		Chemical fertilizer ***	
Characteristics	Depth (cm)		Depth (cm)		Depth (cm)	
	0-7.5	7.5-15.0	0-7.5	7.5-15.0	0-7.5	7.5-15.0
Soil microbial biomass C (mg kg-1 soil)	272	264	235	229	220	214
Soil microbial biomass N (mg kg-1 soil)	39	37	34	31	30	27
Dehydrogenase activity (ug TPF g-1 soil 24 hr-1)	54	51	45	42	35	31
Acid phosphatase activity (ug TPF g-1 soil 24 hr-1)	629	613	603	590	558	543
Azotobacter (10 ³ g- ¹)	12.7	10.5	6.3	5.3	0.9	0.6
P-solubilizing bacteria (10 ⁵ g- ¹)	9.1	8.8	6.5	6.2	3.2	2.9
Actinomycetes (10 ⁵ g- ¹)	26.7	22.9	18.3	16.	1.8	1.2
Fluorescent pseudomonas (10 ⁵ g- ¹)	22.3	19.9	13.3	12.1	9.9	9.1

Yields and economics of organic farming vis-à-vis conventional farming

Year	Status	Yield q ha- ¹	Gross income (Rs.)	Premium (20%)	Total (Rs.)	Net income (Rs.)	Surplus/ deficit over conventional (Rs.)
Conventional	-	10	20000	0	20000	9000	0
First year	Year of conversion	5	10000	0	10000	750	-8250
Second year	Year of conversion	5.75	11250	0	11250	3750	-5250
Third year	Organic	6.25	12500	2500	15000	7000	-1500
Fourth year	Organic	7.50	15000	3000	18000	10500	1500
Fifth year	Organic	8.75	17500	3500	21000	13500	4500
Sixth year	Organic	10.00	20000	4000	24000	165000	7500

Central Institute for Cotton Research, Nagpur Source: Rajendran et. al. (2000)

Advantages of Bio-fertilizers

- i. 20-50% chemical N replacement
- ii. 15-25% synthetic P replacement
- iii. 10-40% grain yield increase
- iv. 15-30% vegetative growth

Nutritional Aspects of Organic Produce

Percent change in nutrient components in Organic over conventional produce

Nutrient	% difference in organic over conventional	Remarks
Vitamin C	+22.7	
Iron	+17.2	Compiled from a review
Calcium	+30.8	of 1230 published
Phosphorus	+12.5	reports in Britain, Europe and USA (1999).
Sodium	+19.6	Europe and OSA (1999).
Potassium	+14.1	Pof : Organia Agricultura
Magnesium	+24.4	Ref.: Organic Agriculture- Philosophy and Science-
B-carotene	-00.3	-By Dr. A.K. Yadav et al.(2006)
Nitrates	-33.9	

N.B.: Keeping the values of coventional produce at 100

SOIL FERTILITY MANAGEMENT IN ORGANIC FARMING

GM FYM Compost Vermicompost Biofertilizer

GREEN MANURING CROPS (45-60 days)

SI. No.	Crops		Organic matter addition (Kg/Bigha)	N ₂ -fixation (Kg/ha)
1.	Sun hemp (Croto	laria juncea)	2825.0	55.0
2.	Dhainsa –	S. acculeata	2020.0	86.0
	(Sesbania)	S. rostrata	2400.0	120.0
3.	Green gram		1065.0	25.0
4.	Cowpea		2000.0	37.0
5.	Lathyrus		1640.0	40.0

VERMI COMPOST:

Important verms are:

- 1. Eisenia faetida
- 2. Eudrillus euginae
- 3. Perionyx excavatus

Length = 10 feet Breadth = 3 feet Depth = 2-2.5 feet

Ratio of cowdung and agro-waste = 40.60 Average nutrients contents in vermicompost

```
N ----- 2.5-3.0%
P<sub>2</sub>O<sub>5</sub> ----- 1.0-1.5%
K<sub>2</sub>O ----- 1.5-2.0%
```

HORMONAL EFFECT
Better plant and root growth

AN IDEAL VERMI COMPOST PRODUCTION UNIT

BIO-FERTILIZERS

Azospirillum

- (1) Heterophic micro-aerophilic bacteria
- (2) Prefers to proliferate on root surface (Rhizosphere)
- (3) May enter into roots and survive in root cortex.
- (4) Excess fixed N_2 is release on the root surface or inside the root tissue
- (5) Associative symbiotic relationship Less chance of leaching loss and utilization by other micro organisms.

Azotobacter:

- (1) Hetero-trophic aerobic bacteria
- (2) It is free living
- (3) Prefers to thrive mainly in soils close to roots.

Important points for application of Azotobacter and Azospirillum Biofertilizer:

Soils Azotobacter / Azospirillum

Azotobacter

- 1. Upland well aerable soil with light to medium texture
- 2. Upland, medium land or low land with medium to Azospirillum heavy texture

Crops

- 2. Upland rice Azotobacter / Azospirillum
- 3. Medium to low land rice

 → Azospirillum
- 4. Fruit plants & plantation crops
 → Azotobacter

PSM

1. Bacillus, Pseudomonas

Mild acidic to neutral soil

2. Aspergillus — Low pH Penicillium

PSM

- 1. Grow vigorously in the rhizosphere region of the roots
- 2. High requirement of carbon source
 - Derive their food from roots exudates
 - 3. Develop associative symbiotic type of relationship with plants
 - 4. Secrete extra cellular metabolites such as Co₂, H₂S, H₂SO₄, HNO₃ & Organic acids and help in Phosphate solubilization

Reactions involved in phosphate solubilization.

1.
$$CO_2$$
 solubilization
$$Ca_3 (PO_4)_2 + CO_2 + H_2O \longrightarrow 2 CaHPO_4 + CaCO_3$$

$$Ca_3 (PO_4)_2 + 2CO_2 + 2H_2O \longrightarrow 2 Ca(H_2PO_4)_2 + CaCO_3$$

2. Mineral acid solubilization

Ca₃ (PO₄)₂ + 2HNO₃
$$\xrightarrow{\text{Nitrifying}}$$
 2 CaHPO₄ + Ca(NO₃)₂ Bacteria

Ca₃(PO₄)₂ + H₂SO₄ $\xrightarrow{\text{S-bacteria}}$ CaHPO₄ + CaSO₄

3. H₂S Solubilization

$$FeSO_4 + H_2S \xrightarrow{Desulfo-vibro} FeS + H_2PO_4^-$$

4. Organic acid solubilization

APPLICATION OF BIO-FERTILIZER

1. Seed treatment

10 kg seed +200 g Azotobacter / Azospirillium + 200 g Phosphatika + 300 — 400 ml rice starch water + 100 g lime powder for acid soil

Mix well and sow

SEEDLING ROOT DIP TREATMENT (B) Paddy (A) Vegetables 1 kg Azotobacter / Azospirillum For 1 acre + 1 Kg Phosphatika of land Vegetable seedlings Dip seedlings for (in bundles) about 30 minutes -5-8 litres of water

(B) Paddy

500 g Azospirillum + 500 g Phosphatika + 1-2 kg dried ground cow dung

3. Soil Treatment

4.0 Kg Azotobacter / Azospirillum + 4.0 kg Phosphatika + 200.0 kg compost. Make a heap

(For 1 acre)

Methods of application:

- Broadcasting
- Furrow Application (e.g.-Potato)

Advantages of Bio-fertilizers

- 1. 20-50% chemical N replacement
- 2. 15-25% synthetic P replacement
- 3. 10-40% grain yd increase
- 4. 15-30% vegetative growth

PEST MANAGEMENT IN ORGANIC FARMING

- 1. General Method to control bacterial and fungal diseases
- (a) 10% cow's urine is sprayed once in 10 days thrice.
- (b) Half litre cow's urine along with ½ litre sour buttermilk is mixed with 9 litres of water. This is sprayed once in 7 days twice.
- (c) Cow's urine and water is mixed in the ratio of 1:2. The seeds or the roots of seedlings are soaked in this for half an hour before sowing or transplanting.
- (d) 40 kg of neem cake per acre is applied as a basal manure for vegetable crops to prevent diseases.
- (e) If there is a disease attack in the nursery, then add 10% cow's urine extract along with the water that is used to irrigate the nursery.

VEGETABLE PESTS - 1

FRUIT BORER IN LADY'S FINGER

FRUIT BORER IN TOMATO

ARMY WORMS IN BEANS

STEM BORER IN RIBBED GOURD

VEGETABLE PESTS - 2

MEALY BUGS

WHITE FLIES

VEGETABLE PESTS - 3

POD SUCKING BUG IN BEAN

EPILACHNA BEETLE

Application: Spray once within 7-10 days

(b)

10 Litre cow urine + 250 g crashed neem cake or green hemp leaves + 250 g ginger + 250 g tulshi leaves + 250 green chilli

3. Azadiractin (0.15% EC)

(As repellant and antifeedant)

At hatching egg and young stage of the pest

1 litre in 200-300 litre water / ha. at 15days interval

BIO-PESTICIDES

Beauvaria bassiana (Bb)

5 g / litre H₂O

→ Spray

Target pests- Hard scale insects

TRICHODERMA (Fungal disease treatment)

Seed Treatment (5 g / kg seed)

Tuber / Rhizome / sett. treatment (10 g / litre H₂O) Seedling treatment (10g / litre H₂O)

Nursery bed treatment

(250 g + 2 kg Fym or vermi compost / 400 sqm.

Spread, mix with soil and give light irrigation

Soil treatment

300 gm / Bigha + Fym or vermi compost

- → Spread and mix with soil.
- **→** May use in furrow also.

To make scenario more clear all the comparisons (1230) were clubbed together on 3 parameters. The overall scenario was as follows:-

- A. Organic with higher nutrient content _____ 57% and lower toxic substances
- B. Conventional with higher nutrient 37% content and lower toxic substances

Conclusion:

- 1. Organically grown crops are more rich in some essential vitamins and minerals and lower in toxic components such as nitrates.
- 2. More intensive studies are on to establish the fact.

NATIONAL PROJECT ON ORGANIC FARMING

Govt. of India

1st October / 2004

Total Outlay
Rs. 57.05
crores for
remaining
10th

5 year plan

MAIN OBJECTIVES

- 1. To facilitate, encourage and promote development of organic agriculture the country.
- 2. To prepare inventory of organic resources available for recycling in agriculture in different agro climatic regions.
- 3. To encourage production of organic sources of nutrients like biofertilisers, organic manuers, compost etc. and bio-pesticides, biocontrol agents etc. centrified input of organic farming.
- 4. To act as nodal agency for formulation of standards and mechanism of accreditation, inspection, regulation, quality control and monitoring.
- 5. To impart training to Accreditation and Certification agencies, farmers, industries and organizations engaged in the production, promotion and marketing of different components of organic farming.
- 6. To provide financial support to State Govts., organisations, NGOs etc. for production and promotion of organic inputs and market development of organic produce.
- 7. To compile information on status of organic farming in the country, identity crops and areas and assess market for demand and supply of organic produce.

COMPONENTS OF THE PROJECT

The components of the National Project on Organic Farming are as below:

- 1. Construction of building for NCOF/RCOFs
- 2. Capacity Building for promotion of organic farming through service providers.
- 3. Financial assistance for setting up of production units of
- Fruit/Vegetable units
- Biofertilisers units
- Vermi-culture hatcheries
- 4. Training programmes for :
- Certification and Inspection Agencies/Services Providers.
- Organic input production and quality control;
- Extension officers / Field functionaries.
- Farmers training on Organic Farming
- Trainers Training and International cooperation

5. Field demonstrations

- On organic inputs including vermicompost/city compost.
- Setting up of model organic farms.
- Utilisation of enriched biogas slurry

6. Market Development and promotion

- Development of new initiatives;
- Dissemination of proven technology;
- Creating National Awarenss through International/National/Regional

Seminars / Exhbitions etc. and publicity through print and electronic media.

For Details, Write to

The Director, Regional Centre of Organic Farming, State Agricultural Farm, Mantripukhri, Imphal-795002

INDIA ORGANIC 2005 (4th Nov. to 7th Nov., 2005) Lal Bagh, Bangalore

Dr. B. Kalita (2nd from right)- Showing Organic Joha Rice to a foreign visitor

INDIA ORGANIC 2005 (4th Nov. to 7th Nov., 2005) Lal Bagh, Bangalore

Dr. B. Kalita (2nd from lift)- discussing with Dr. Peter Poctor, a leading personality and pioneer of Biodynamic Agriculture in India

Present Global Agricultural Wind is blowing slowly towards organic

— Hence —Go OrganicThink OrganicEat Organic

